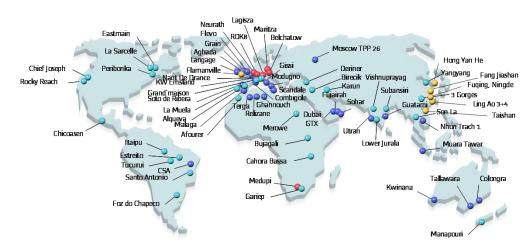
ALSTOM's Chemical Looping Combustion Prototype for CO₂ Capture from Existing Pulverized Coal Fired Power Plants

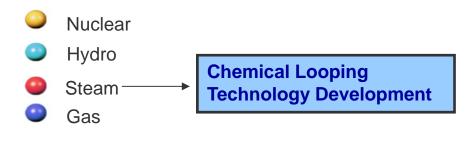
Iqbal Abdulally - Alstom Power Herb Andrus Jr., Carl Edberg, John Chiu - Alstom Power Paul Thibeault - Alstom Power

Bruce Lani US DOE/NETL

2012 CO₂ Capture Technology Meeting, July 9 – 12, 2012


Agenda

1st topic	General Project & Technology Background	
2nd topic	Phase 0 to III Activities	
3rd topic	Phase IV Activities and Status	
4th topic	Next Steps	


2012 CO₂ Capture Technology Meeting , July 9 – 12, 2012P 2 \odot ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

The Alstom Group: a Worldwide Leader in Power Generation

Over 41 GW under execution

Full Power Systems Portfolio

2012 CO₂ Capture Technology Meeting, July 9 – 12, 2012P 3

© ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

N 1 in hydro power

N 1 in integrated power plants

N 1 in conventional nuclear power island

Recent acquisitions of solar & wind power

N 1 in air quality control systems

N 1 in services for electric utilities

Project Overview Project Goals and Objectives

- Chemical Looping Program:
 - Develop and commercialize chemical looping process to meet the goals for new or existing coalfired power plants.
- Prototype Project:
 - Design (BP1), build, and test (BP2) a 3 MWth Prototype to demonstrate Chemical Looping
 Systematic Testing
 Extended auto-thermal operation
 Obtain engineering and operating information necessary to design and build a reliable follow-on demonstration plant.

2012 CO₂ Capture Technology Meeting , July 9 – 12, 2012P 4 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority is strictly prohibited.

Alstom's Chemical Looping Development Targets:

- Over 90% CO₂ capture from coal
- Less than \$20/ton avoided cost of CO₂ capture
- Capital cost 20% < conventional steam plant (w/o CO₂ capture)
- Applicable to retrofit and new coal-fired power plants
- Retrofit < 20% increase in COE
- Beat steam power and IGCC performance and economics, world-wide
- Medium-Btu syngas or hydrogen without oxygen plant
- Economical H₂ production at low cost

2012 CO₂ Capture Technology Meeting, July 9 – 12, 2012P 5 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Chemical Looping Prototype Schedule As Planned

© ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Project Overview – Phase IV Funding

Total	Budget	Period	1	& 2
		-		

October 2008 to September 2011

DOE Funding	\$7,395,624
Alstom Funding	\$1,848,906
Total Budget	\$9,244,530

Total Budget Period 2 Extension

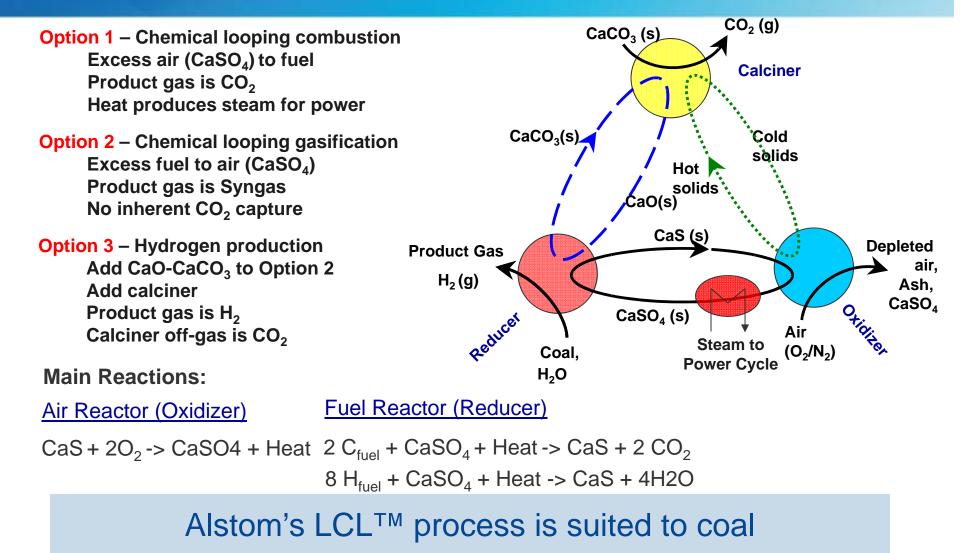
October 2011 to Present

\$1,500,000 Alstom Funding

Total Budget 2008 to Present

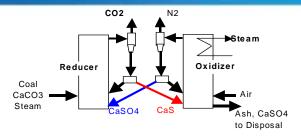
\$10,744,530

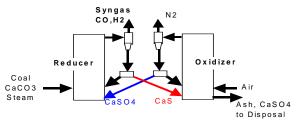
Participants:

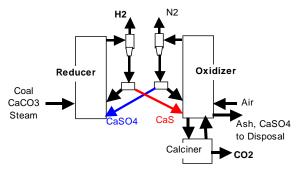


ALSTOM

 $\begin{array}{l} 2012\ CO_2\ Capture\ Technology\ Meeting\ ,\ July\ 9-12,\ 2012P\ 7\\ \circ \ AlSTOM\ 2012.\ All\ rights reserved.\ Information\ contained\ in this\ document\ is\ indicative\ only.\ No\ representation\ or\ warranty\ is\ given\ or\ should be relied\ on\ that\ is\ complete\ or\ correct\ or\ will\ apply\ to\ any\ particular\ project.\ This\ will\ depend\ on\ the\ technical\ and\ commercial\ circumstances.\ It\ is\ provided\ without\ tiability\ and\ is\ subject\ to\ change\ without\ express\ or\ that\ author for a subject\ to\ change\ without\ express\ author for\ au$ is strictly prohibited.


Alstom's Limestone Based Chemical Looping (LCL[™]) Concept & Process Options

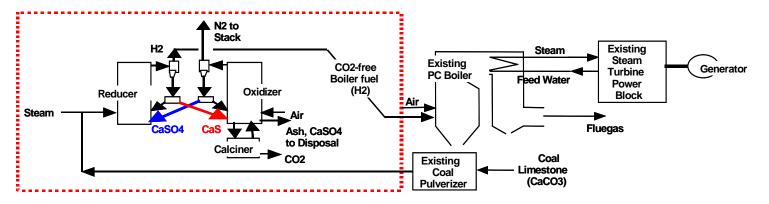

2012 CO₂ Capture Technology Meeting, July 9 – 12, 2012P 8 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.


Chemical Looping Process: Options and Applications

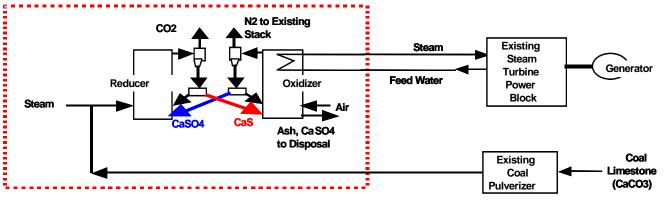
Option 2 – Syngas with no CO2 Capture

Option 3 – Hydrogen with CO2 Capture

Applications – **LCL**[™]


- CO₂ Capture PC Retrofit
- CO₂ Capture CFB Retrofit
- CO₂ Capture-Ready Power Plant
- Advanced Steam Cycles with CO₂ capture
- IGCC with Down-Stream CO₂ Capture
- Industrial Syngas production
- Coal-to-Liquid Fuels
- CO₂ Capture PC Retrofit
- CO₂ Capture CFB Retrofit
- CO₂ Capture-Ready PC/CFB Power Plant
- Advanced Steam Cycles with CO₂ capture
- IGCC with CO₂ Capture
- Fuel Cell Cycles with CO₂ Capture
- Industrial Hydrogen with CO₂ Capture

Flexible technology with low cost


2012 CO₂ Capture Technology Meeting, July 9 – 12, 2012P 9 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Chemical Looping Overview Retrofit Options

Concept 1 – Chemical Looping CO₂ Free Fuel; Minimum Boiler Modifications (Option 3)

Concept 2 – Chemical Looping Oxidize Replaces/Modifies Boiler (Option 1)

Retrofit Options at < 20% Increase in COE with CO₂ Capture

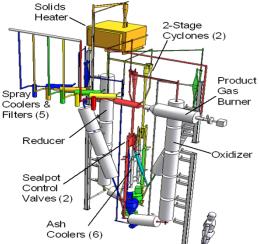
2012 CO₂ Capture Technology Meeting , July 9 – 12, 2012P 10 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Agenda

1st topic	General Project & Technology Background
-----------	---

Phase 0 to III Activities	
Phase IV Activities and Status	
Next Steps	
	Phase IV Activities and Status

2012 CO₂ Capture Technology Meeting , July 9 – 12, 2012P 11 \odot ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.



Limestone CLC Development Timeline

- Earlier Program: Hot Solids Gasification: 1996-2001
 Process and Sorbent Investigation
 Economic Evaluation
 Lead to Chemical Looping Program
- Chemical Looping Development
 - Phase 0 (2001) Alstom's Internal Development Project, Construction of the Process Development Unit (PDU)
 - Phase I (2003) DOE Program Started, Verified Sorbent Chemistry and Solids Transport
 - Phase II (2005) -Verified Gasification Chemistry and Process Control Strategy
 - ✓ Phase III (2006) Developed Automatic Control System

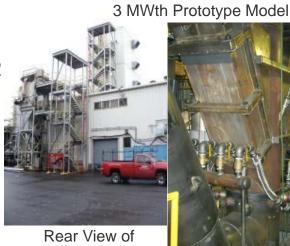
 Phase IVA (2008) - Built 3 MW Prototype, Shakedown and Initial testing

2012 CO₂ Capture Technology Meeting , July 9 – 12, 2012P 12 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Agenda

1st topic	General Project & Technology Background	
2nd topic	Phase 0 to III Activities	
3rd topic	Phase IV Activities and Status	
4th topic	Next Steps	

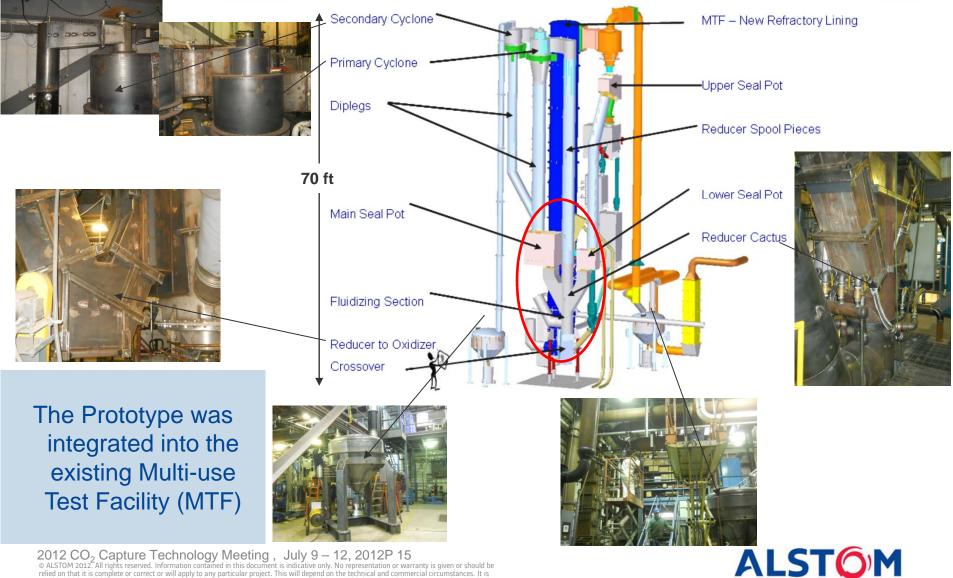
2012 CO₂ Capture Technology Meeting , July 9 – 12, 2012P 13 \odot ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

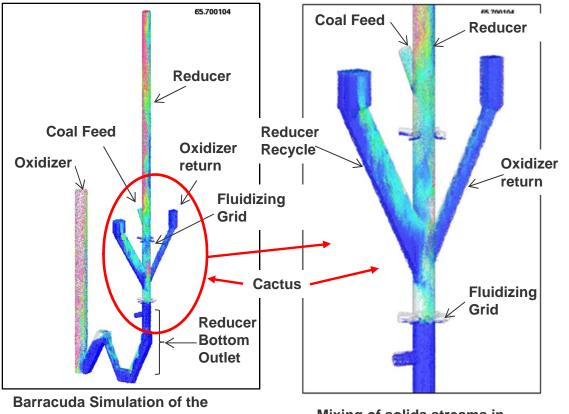


Prototype Constrauction and Operation Chemical looping – 3 MWth Limestone based Prototype Coal

- Main objectives:
 - Design, engineering, construction, commissioning and operation of a 3 MWth CaS prototype,
 - Autothermal operation of Limestone-based prototype,
 - Proof of concept deliver data required to scale up to Demo and commercial size
- 50 month program
 - Shakedown completed
 - First coal fire completed June 2011
 - Autothermal operation Scheduled for August/Sept. 2012
- Total approved budget: 9.25 M\$, cost share by US-DOE and Alstom
- Partners: US-DOE/NETL & Alstom

 $\begin{array}{l} 2012\ CO_2\ Capture\ Technology\ Meeting\ ,\ July\ 9-12,\ 2012P\ 14\\ {\ \ \circ}\ Altrom\ 2012.\ All\ rights\ reserved.\ Information\ contained\ in this\ document\ is\ indicative\ only.\ No\ representation\ or\ warranty\ is\ given\ or\ should\ be relied\ on\ that\ is\ scale and\ commercial\ circumstances.\ It\ is\ representation\ or\ warranty\ is\ given\ or\ should\ be relied\ on\ that\ is\ commercial\ circumstances.\ It\ is\ representation\ commercial\ circumstances.\ representation\ circumstances.\ representation\ cinteration\ cinter$ is strictly prohibited


Prototype Building


70 ft

Chemical Looping Prototype Component Construction

 $\begin{array}{l} 2012\ CO_2\ Capture\ Technology\ Meeting\ ,\ July\ 9-12,\ 2012P\ 15\\ {}_{\circ}\ Altrom\ 2012.\ All\ rights\ reserved.\ Information\ contained\ in this\ document\ is\ indicative\ only.\ No\ representation\ or\ warranty\ is\ given\ or\ should be relied\ on\ that\ is\ complete\ or\ correct\ or\ will\ apply\ to\ any\ particula\ project.\ This\ will\ depend\ on\ the\ technical\ and\ commercial\ circumstances.\ It\ is\ provided\ without\ label{eq:should be provided\ without\ biperturbative\ that\ biperturbative\ that\ biperturbative\ that\ biperturbative\ that\ biperturbative\ biperturbative\ that\ biperturbative\ that\ biperturbative\ that\ biperturbative\ bipert$ is strictly prohibited.

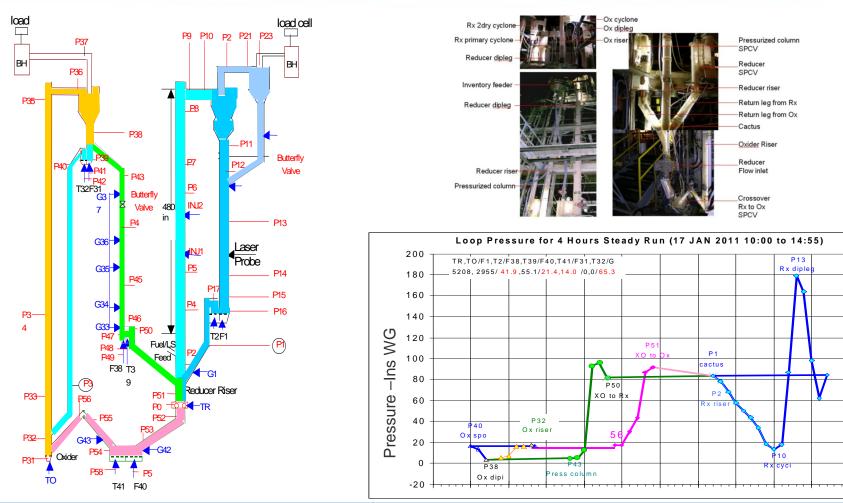
Prototype Validation: Computational Fluid Dynamics

Mixing of solids streams in Cactus above the fluidizing gas grid 0-25 m/s

Study and improve:

- Fluidization
- Solids transport
- Mixing in "Cactus"
- **Residence times**
- Fixed carbon retention

in reducer


Chemical Loop reducer column(color range 0 – 25m/s)

Improving LCL[™]Process

 $\begin{array}{l} 2012\ CO_2\ Capture\ Technology\ Meeting\ ,\ July\ 9-12,\ 2012P\ 16\\ {}_{\circ}\ ALSTOM\ 2012.\ All\ rights\ reserved.\ Information\ contained\ in this\ document\ is\ indicative\ only.\ No\ representation\ or\ warranty\ is\ given\ or\ should be relied\ on\ that\ is\ complete\ or\ correct\ or\ will\ apply\ to\ any\ particula\ project.\ This\ will\ depend\ on\ the\ technical\ and\ commercial\ circumstances.\ It\ is\ provided\ without\ label{eq:should be provided without\ biperturbative\ that\ the technical\ and\ commercial\ circumstances.\ It\ is\ provided\ without\ that\ biperturbative\ bipertur$ is strictly prohibited.

Prototype Validation: Cold Flow Model Testing

Stable coupled operation with smooth solids transport

37th International Technical Conference on Clean Coal & Fuel Systems June 3-7, 2012 Clearwater, FL, USA P 17

© ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Prototype Testing Status

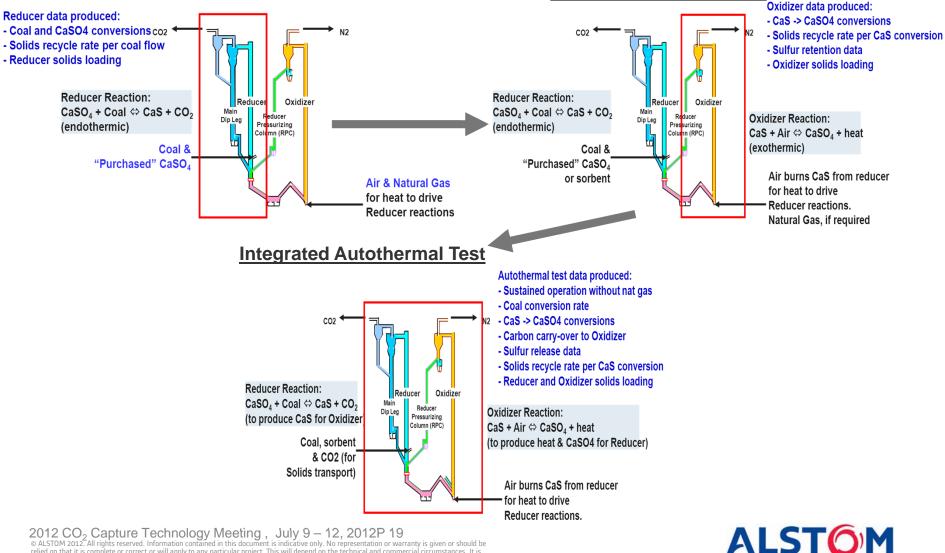
Main Milestones:

- June 2011 First coupled run with Pitts #8 Coal
- Sept. Oct. 2011 Series of short runs with Pitt.#8 coal
- May 2012 Reducer tests decoupled, nitrogen blown runs with Adaro coal and charcoal – All reducer reactions observed
- June 2012 Extended reducer tests with Adaro Coal – All reducer reactions observed

Major Achievements:

- Controlled solids recirculation in CFM & prototype.
- Coal firing at low reactor temps with low tar formation.
- Coal firing at design temperature with no evidence of tar formation.
- SAHE operation.
- Hot restart after main fuel trip.
- Production of CO₂ (Option 1) and Syngas (Option 2).

Combustion reactions with chemical looping reactions.

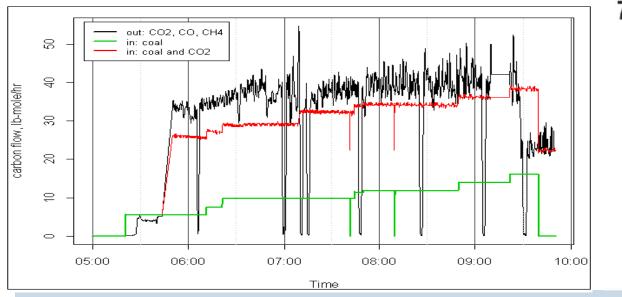


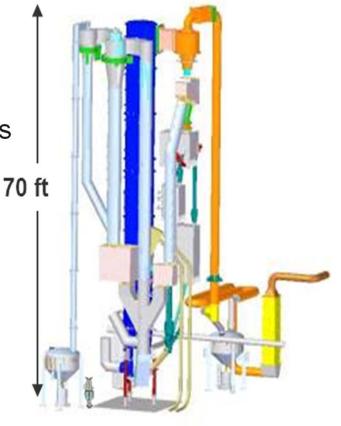
Research Operators in Control Room During Hot Coupled Testing Hot Coupled Loop Operation Achieved with Coal & Charcoal

2012 CO₂ Capture Technology Meeting, July 9 – 12, 2012P 18 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Prototype Validation: "Decoupled" Tests Towards Autothermal

Decoupled Reducer Test


Decoupled Oxidizer Test


2012 CO₂ Capture Technology Meeting, July 9 – 12, 2012P 19 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, to ctrictly provibilited is strictly prohibited.

Prototype Reducer tests: Preliminary Testing Results

Significant Observations:

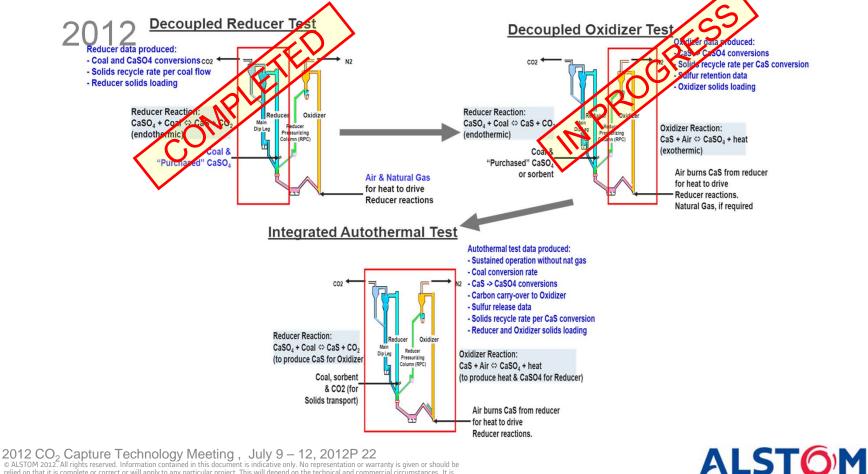
- All LCL[™] reactions realized
- High carbon burnup efficiency > 98%
- Negligible carbon carryover to oxidizer
- Oxygen demand 15 to 20%
- SO₂ release can be minimized by varying excess air (CaSO₄) to fuel ratio

3 MWth Prototype Model

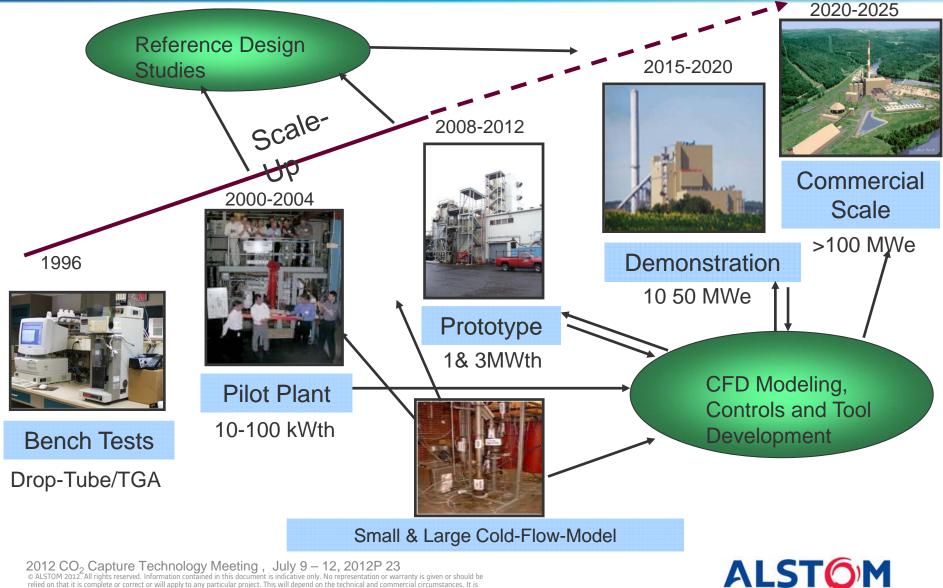
Hot Coupled Loop Operation Achieved with Coal & Charcoal

2012 CO₂ Capture Technology Meeting, July 9 – 12, 2012P 20 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

Agenda


1st topic	General Project & Technology Background	
2nd topic	Phase 0 to III Activities	
3rd topic	Phase IV Activities and Status	
4th topic	Next Steps	

2012 CO₂ Capture Technology Meeting , July 9 – 12, 2012P 21 \odot ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.


Limestone Based Chemical Looping Path Forward

- Oxidizer Testing: July August 2012
- Coupled Autothermal Operation: August -September

© ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

LCL[™] Process Development Steps Managed Development and Scale-up

 $\begin{array}{l} 2012\ CO_2\ Capture\ Technology\ Meeting\ ,\ July\ 9-12,\ 2012P\ 23\\ {\ \ \circ}\ Altrom\ 2012.\ All\ rights\ reserved.\ Information\ contained\ in this\ document\ is\ indicative\ only.\ No\ representation\ or\ warranty\ is\ given\ or\ should be relied\ on\ that\ is\ complete\ or\ correct\ or\ will\ apply\ to\ any\ particula\ project.\ This\ will\ depend\ on\ the\ technical\ and\ commercial\ circumstances.\ It\ is\ provided\ without\ label{eq:application}$ is strictly prohibited

Acknowledgments

- Funding Partners:
 - US-DOE/NETL, Alstom
- Key Team Members:
 - Herbert E. Andrus, John Chiu, Jr., Paul Thibeault, Carl Edberg, Jim Kenney, Michael Clark

Significant Progress Thanks to These Contributions

37th International Technical Conference on Clean Coal & Fuel Systems June 3-7, 2012 Clearwater, FL, USA - P 24 © ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.

